Electrical breakdown and ESD phenomena for devices with nanometer-to-micron gaps

نویسندگان

  • Al Wallash
  • Larry Levit
چکیده

The current vs. voltage and electrical breakdown behavior for devices with micron and sub-micron gaps between conductors is studied. The limitations of the well-known but often-misinterpreted Paschen curve are discussed. The little-known modified Paschen curve, that includes field emission effects so important in understanding breakdown behavior for devices with sub-micron gaps, is described. Current vs. voltage measurements across metal-air-metal, metal-insulator-metal and metal-insulator-air-insulator-metal gaps with gaps ranging from 4 nm to 4 μm are reported. The breakdown voltage for an air gap of 0.9 μm was found to be 150 V, far below the Paschen curve minimum breakdown limit, and field emission behavior was confirmed via the Fowler-Nordheim plot. Metal-insulator-metal gaps with a diamond-like carbon thin-film with a thickness of 4 nm had a breakdown voltage of only 1V. SEM and AFM analysis show that the breakdown damage is crater-like and through the carbon layer. Other characterization of the damage caused by breakdown is presented. Tribocharging, electrostatic induction, and other ESD-related phenomena, are discussed for several devices with sub-micron gaps. It is concluded that devices with sub-micron gaps can face a serious challenge due to electrical breakdown during manufacturing, handling and operation. These devices include photolithographic reticles, magnetic recording heads, MEMS and field emission displays.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sub-continuum Thermal Simulations of Deep Sub-Micron Devices under ESD Conditions

The decreasing dimensions of IC devices is rendering the heat diffusion equation highly inaccurate for simulations of electrostatic discharge (ESD) phenomena. As dimensions of the heated region in the device are reduced far below 200 nm, neglecting the ballistic, sub-continuum nature of phonon conduction in the silicon lattice can strongly underpredict the temperature rise. This work integrates...

متن کامل

Effect of nano and micron WO3 on microstructure and electrical properties of lead free potassium sodium niobate piezoceramics

Lead free potassium sodium niobate (KNN) piezoceramics were synthesized via conventional solid state sintering route. Nano and micron WO3 were separately added to KNN through ball-milling. Dielectric and piezoelectric properties of samples sintered in the temperature range of 1110°-1145°C were measured by precision LCR-meter and APC d33-meter devices. The results revealed that micron WO3 partic...

متن کامل

Experimental study of electrical breakdown in MEMS devices with micrometer scale gaps

We present an experimental study of the DC breakdown voltage of MEMS interdigitated aluminum electrodes with gaps ranging from 10 to 500 μm. Unlike most research on MEMS electrodes that was done at atmospheric pressure, our work has focused on the effect of gas pressure and gas type on the breakdown voltage. A main goal was to identify geometries that favor the creation of low-voltage discharge...

متن کامل

The Impact of CMOS technology scaling on MOSFETs second breakdown: Evaluation of ESD robustness

The impact of CMOS technology scaling on the second breakdown of ESD protection devices has been investigated using 2-D simulations and analytical calculations. It is shown that the second breakdown trigger current (It2) can not be reliably used as an ESD robustness criterion in sub-0.18 um ESD protection devices. When a technology feature size is reduced, the doping of drain and drain extensio...

متن کامل

Process and Layout Dependent Substrate Resistance Modeling for Deep Sub-Micron ESD Protection Devices

This paper demonstrates a new methodology for bringing accurate substrate resistance modeling into circuit level ESD simulation. The impact of layout and process variations on the effective substrate resistance of deep sub-micron ESD devices is analyzed and modeled using a quasi mixed-mode approach. The substrate resistance simulated by this method shows good agreement with the values extracted...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002